置顶

深度解析创新RAG:PIKE-RAG与DeepRAG,RAG技术的创新变革

2025-04-03

置顶

2W8000字读懂GPT全家桶:从GPT-1到O1的技术演进与突破

2025-03-25

从线性到非线性:感知器如何诞生深度学习

从线性到非线性:感知器如何诞生深度学习 更多专栏文章点击查看: LLM 架构专栏

LangGraph 多智能体群:使用 LangGraph 创建群风格多智能体系统的 Python 库

LangGraph 多智能体群是一个 Python 库,旨在将多个 AI 智能体编排成一个有凝聚力的 “群”。它建立在 LangGraph 之上,LangGraph 是一个用于构建健壮、有状态智能体工作流的框架,以实现一种特殊形式的多智能体架构。在一个群中,具有不同专业的智能体根据任务的需要动态地将

利用Transformer、DPR、FAISS和BART对检索增强生成(RAG)进行深入技术探索

利用Transformer、DPR、FAISS和BART对检索增强生成(RAG)进行深入技术探索 |文末点击阅读原文查看网页版| 更多专栏文章点击查看: LLM 架构专栏

RAG 

强化学习详解第八部分 RLAIF 如何实现人工智能反馈的规模化飞跃

超越人类极限的规模对齐 在我们之前的文章中,我们探讨了人类反馈强化学习(RLHF)是如何通过使用人类评估来教导模型我们的偏好,从而彻底改变了人工智能对齐的方式。 但 RLHF 存在一个令人困扰的局限性,你可能已经猜到了:“人类”。 别误会我的意思 —— 人类反馈是无价的。 但它也很昂贵、缓慢,并且在

强化学习详解第七部分 RLHF:解码 AI 与人类偏好对齐的奥秘

|文末点击阅读原文查看网页版| 更多专栏文章点击查看: LLM 架构专栏

清华大学| 强化学习是否激励LLM中超越基本模型的推理能力?

|文末点击阅读原文查看网页版| 更多专栏文章点击查看: LLM 架构专栏

强化学习详解第六部分 高级策略优化:深度强化学习的演变

高级策略优化:深度强化学习的演变 在我们迄今为止探索强化学习的旅程中,我们见证了深度神经网络如何彻底改变了在复杂环境中可能实现的事情。但就像所有的进化飞跃一样,深度Q网络(DQN)及其直接衍生算法仅仅是更深刻变革的开端。 本文聚焦高级策略优化,深度解析 TRPO、PPO 等经典算法如何解决传统强化学

掌握Torchtune:高效微调、评估和部署大型语言模型的实用指南


掌握Torchtune:高效微调、评估和部署大型语言模型的实用指南 近日热文:全网最全的神经网络数学原理(代码和公式)直观解释 欢迎关注知乎和公众号的专栏内容 LLM架构专栏 知乎LLM专栏